A systemic model predictive control based on adaptive power pinch analysis for load shifting and shedding in an isolated hybrid energy storage system

Author:

NYONG-BASSEY Bassey1,EPEMU Ayebatonye1

Affiliation:

1. Federal University of Petroleum Resources Effurun

Abstract

This paper presents a novel systemic algorithm based on conservative power pinch analysis principles using a computationally efficient insight-based binary linear programming optimization technique in a model predictive framework for integrated load shifting and shedding in an isolated hybrid energy storage system. In a receding 24-hour predictive horizon, the energy demand and supply are integrated via an adaptive power grand composite curve tool to form a diagonal matrix of predicted hourly minimum and maximum energy constraints. The intgrated energy constraints must be satisfied recursively by the binary optimisation to ensure the energy storage’s state of charge only operates within 30% and 90%. Hence, the control command to shift or shed load is contingent on the energy storage state of the charge violating the operating constraints. The controllable load demand is shifted and/or shed to prevent any violations while ensuring energy supply to the most critical load without sacrificing the consumers' comfort. The proposed approach enhances efficient energy use from renewable energy supply as well as limits the use of the Hydrogen resources by a fuel cell to satisfy controllable load demands which can be shifted to periods in the day with excess renewable energy supply.

Publisher

Journal of Energy Systems

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bernoulli polynomial‐based control technique for PV‐integrated grid system under distorted supply;International Journal of Circuit Theory and Applications;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3