Thermal analysis of phase change materials storage in solar concenter

Author:

AL HASHMİ Sulaiman1ORCID,CHEN Mingjie2ORCID

Affiliation:

1. RENEWABLE ENERGY

2. Sultan Qaboos University

Abstract

Thermal analysis of high-temperature phase change materials (PCM) is conducted with the consideration of a 20% void and buoyancy-driven convection in a stainless-steel capsule. The effects of the thermal expansion and the volume expansion due to phase change on the energy storage and retrieval process are explored. The used water to fill the void between two different wax paraffin and stearic acid spheres is considered as a potential PCM for concentrated solar power. The charging/discharging process into and from the capsule wall is simulated under different boundary conditions for laminar and turbulent flows. Computational models are conducted by applying an enthalpy-porosity method and volume of fluid method to calculate the transport phenomena within the PCM capsule, including an internal air void. A simplified two-dimensional model of the PCM contained within the spheres is constructed and thermal analyses are performed for the transition from solid to liquid states. Simulated charging process modes are compared with the theory. According to experiments, the temperature distributions from 40-60 mm without and with 60 mm with copper fin have different behavior. The paraffin takes less time than stearic acid for total transformation at a rate of 0.5. The size of the sphere increases over the amount of time and the phase of the sphere to complete changes as stearic acid expands more than paraffin during the transition. Inserting a rectangular fin, that is made from copper into the ball reduces the cycle time and increases output.

Funder

Sultan Qaboos University

Publisher

Journal of Energy Systems

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3