Energy analysis of a small-scale multi-effect distillation system powered by photovoltaic and thermal collectors

Author:

SHETA MahmoudORCID,ELWARDANY AhmedORCID,OOKAWARA ShinichiORCID,HASSAN HamdyORCID

Abstract

Powering thermal desalination technologies by renewable energy is believed to be a viable solution to overcome the worldwide freshwater scarcity problem without causing more damage to the environment. In this paper, a multi-effect distillation system (MED) with mechanical vapor compression is powered by the generated electrical power of photovoltaic/thermal collectors and assisted by the by-product thermal power generated. The system is sized according to thermal power needed and designed for small-scale application and weather conditions of Alexandria, Egypt. Excess electricity is injected into the grid and hot water storage tank is used as a back-up to compensate low and fluctuating radiation. Results show that, at a saturation temperature of MED’s heating steam of 55 °C, freshwater production is 11.1 m3/day in 10 hours of operation, system specific power consumption is 9.72 kWh/m3, specific area is 317.04 m2s/kg, and performance ratios of the desalination unit is 3.33 and 6.97 for the overall system. However, at T = 65 °C the system’s electrical energy is totally absorbed by the compressor, and the system’s performance decreases.

Publisher

Journal of Energy Systems

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3