Affiliation:
1. Egypt-Japan University of Science and Technology (E-JUST)
2. Tokyo Institute of Technology
Abstract
In this work, a hybrid system is comprised of wind turbines (WT) and photovoltaic (PV) panels to generate green Hydrogen via water electrolysis. Consideration is given to the influence of five electrical power generation scenarios on system performance and Hydrogen production cost. This study adopts the solar radiation, wind speed, and ambient temperature for Mersa-Matruh in Egypt. The system performance is studied using MATLAB-Simulink over one year. The winter months have high wind speed and low sun radiation compared to other months, whereas additional months have high solar radiation and lower wind speed than the winter months. The findings show that the amount of Hydrogen produced for all scenarios varies from 12,340 m3 to 13,748 m3 per year. The system efficiency and LCOH are 7.974% and 3.67$/kg, 9.56%, and 3.97$/kg, 10.7% and 4.12 $/kg, 12.08%, and 4.3$/kg, and 16.23% and 4.69$/kg for scenarios1 to 5, respectively. Finally, the introduced system can reduce CO2 emissions by 345 tons over the lifetime and gain about 13,806$.
Publisher
Journal of Energy Systems
Subject
Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献