Optimisation of Multipurpose Reservoir Operation by coupling SWAT and Genetic Algorithm for Optimal Operating Policy (Case Study: Ganga River basin)

Author:

Anand JatinORCID,Gosain A K,Khosa R

Abstract

Reservoirs are recognized as one of the most efficient infrastructure components in integrated water resources management and development. At present, with the ongoing advancement of social economy and requirement of water, the water resources shortage problem has worsened, and the operation of reservoirs, in terms of consumption of flood water, has become significantly important. Reservoirs perform both regulation of flood and integrated water resources management, in which the flood limited water level is considered as the most important parameter for trade-off between regulation of flood and conservation. To achieve optimal operating policies for reservoirs, large numbers of simulation and optimization models have been developed in the course of recent decades, which vary notably in their applications and working. Since each model has their own limitations, the determination of fitting model for derivation of reservoir operating policies is challenging and most often there is always a scope for further improvement as the selection of model depends on availability of data. Subsequently, assessment and evaluation associated with the operation of reservoir stays conventional. In the present study, the Soil and Water Assessment Tool (SWAT) models and a Genetic Algorithm model has been developed and applied to two reservoirs in Ganga River basin, India to derive the optimal operational policies. The objective function is set to minimize the annual sum of squared deviation form desired irrigation release and desired storage volume. The decision variables are release for irrigation and other demands (industrial and municipal demands), from the reservoir. As a result, a simulation-based optimization model was recommended for optimal reservoir operation, such as allocation of water, flood regulation, hydropower generation, irrigation demands and navigation and e-flows using a definite combination of decision variables. Since the rule curves are derived through random search it is found that the releases are same as that of demand requirements. Hence based on simulated result, in the present case study it is concluded that GA-derived policies are promising and competitive and can be effectively used operation of the reservoir.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3