Entropy as the High-Level Feature for XAI-Based Early Plant Stress Detection

Author:

Lysov Maxim,Maximova Irina,Vasiliev Evgeny,Getmanskaya Alexandra,Turlapov Vadim

Abstract

The article is devoted to solving the problem of searching for universal explainable features that can remain explainable for a wide class of objects and phenomena and become an integral part of Explainable AI (XAI). The study is implemented on the example of an applied problem of early diagnostics of plant stress, using Thermal IR (TIR) and HSI, presented by 8 vegetation indices/channels. Each such index was presented by 5 statistical values. A Single-Layer-Perceptron classifier was used as the main instrument. TIR turned out to be the best of the indices in terms of efficiency in the field and sufficient to detect all 7 key days with 100% accuracy. Our study shows also that there are a number of indices, inluding NDVI, and usual color channels Red, Green, Blue, which are close to TIR possibilities in early plant stress detection with 100% accurasy or near, and can be used for wide class of plants and in different conditions their treatment. The stability of the stress classification in our study was maintained when the training set was reduced up to 10% of the dataset volume. The entropy-like feature of (max-min) for any indices/channels have determined as a leadersheep universal high-level explainable feature for the plant stress detection, which used in interaction with some of other statistical features.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3