User Authentication and Authorization Framework in IoT Protocols

Author:

Al-refai Hasan,Alawneh AliORCID

Abstract

The Internet of Things (IoT) has become one of the most attractive domains nowadays. It works by creating a special network between physical devices such as vehicles, home equipment, and other items. In recent days, the common technologies of communication such as Wi-Fi and 2G/3G/4G cellular are insufficient for the IoT networks because they are designed to serve appliances with immense processing capabilities such as laptops and PCs. Moreover, most of these technologies are centralized and use an existing infrastructure. Currently, the new communication technologies such as Z-Wave, 6LowPAN, and Thread are dedicated to the IoT and have been developed to meet its requirements. These technologies can handle many factors such as range, data requirements, security, power demands, and battery life. Nevertheless, the security issues in IoT systems have major concerns and matters because vulnerabilities in such systems may result in fatal catastrophes. In this paper, an enhanced IoT security framework for authentication and authorization is proposed and implemented to protect the IoT protocols from different types of attacks such as man-in-the-middle attack, reply attack, and brute force attack. The proposed framework combines an enhanced token authentication that has identity verification capabilities and a new sender verification mechanism on the IoT device side based on time stamp, which in turn can mitigate the need for local identity verification methods in IoT devices. The proposed IoT security framework is tested using security analysis with different types of attacks compared with previous related frameworks. The analysis shows the high capability of the proposed framework to protect IoT networks against many types of attacks compared with current available security frameworks. Finally, the proposed framework is developed using Windows application to simulate the framework phases, check its validity through the real network, and calculate the payload time is adds.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3