Abstract
The national-scale evaluation and modelling of the impact of agricultural management and cli-mate change on soils, crop growth, and the environment require soil information at a spatial res-olution addressing individual agricultural fields. This manuscript presents a data science ap-proach which agglomerates the soil parameter space into a limited number of functional soil pro-cess units (SPUs) which may be used to run agricultural process models. In fact, two unsupervised classification methods were developed to generate a multivariate 3D data product consisting of SPUs, each being defined by a multivariate parameter distribution along the depth profile from 0 to 100 cm. The two methods account for differences in variable types and distributions and in-volve genetic algorithm optimization to identify those SPUs with the lowest internal variability and maximum inter-unit difference with regards to both, their soil characteristics and landscape setting. The high potential of the methods was demonstrated by applying them to the agricultural German soil landscape. The resulting data product consists of twenty SPUs. It has a 100 m raster resolution in the 2D mapping space, and its resolution along the depth profile is 1 cm. It includes the soil properties texture, stone content, bulk density, hydromorphic properties, total organic carbon content, and pH.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献