Multimodal Micro-video Classification Based on 3D Convolutional Neural Network

Author:

Sun Yueyue,Chen Bin,Wei Fang,Chen Xinyue,Gong Qiang,Zhang Peng

Abstract

Along with the popularity of the Internet, people are exposed to more and more ways of micro-videos, and a huge amount of micro-video data has emerged. micro-videos have gradually become the Internet content preferred by the public, and a large number of micro-video apps have also emerged, such as Tiktok and Kwai. Intelligent classification and mining of micro-videos can greatly enhance user experience, improve business operation efficiency and enhance user experience. Through deep intelligent analysis and mining of micro-videos, important information in micro-videos can be extracted to provide an important basis for beautifying videos, content appreciation, video recommendation, content search, etc. In the past, content understanding for short videos often used human work annotation, but in recent years, with the great success of deep convolutional neural networks in image recognition, short video content understanding based on this method has gradually developed. Nowadays, most recognition algorithms extract the feature representation of each frame independently and then fuse them. However, while extracting the feature representation, some low-level semantic features are lost, which makes the algorithm unable to accurately distinguish the category of the video. At present, the algorithm of micro-video recognition based on deep learning has surpassed the iDT algorithm, making these traditional methods fade out of people’s view. In this paper according to the micro-video classification task, a new network model is proposed to concatenate features of each modality into the overall features of various modalities through the network, and then fuse the various modal features with the attention mechanism to obtain the whole micro-video features, which will be used for classification. In order to verify the effectiveness of the algorithm proposed in this paper, experiments are conducted in the public dataset, and it is shown the effectiveness of our model.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3