Distribution, Assessment, and Source of Heavy Metals in Sediments of the Qinjiang River, China

Author:

Zhang Shuncun,Chen Bo,Du JunruORCID,Wang Tao,Shi Haixin,Wang Feng

Abstract

Heavy metals are toxic, persistent and non-degradable. After sedimentation and adsorption, they accumulate in water sediments. The aim of this study was to understand the heavy metal pollution of Qinjiang River sediments on the ecological environment and apportioning sources. The mean total concentrations of Mn, Zn, Cr, Cu, and Pb are 3.14, 2.33, 1.39, 5.79, and 1.33 times higher than the background values, respectively, except for the Co, Ni, and Cd, which are lower than the background values; Fe, Co, Ni, Cd, Cr, Cu, and Pb are all primarily in the residual state, while Mn and Zn are primarily in the acid-soluble and oxidizable states, respectively. Igeo, RI, SQGs and RAC together indicate that the pollution status and ecological risk of heavy metals in Qinjiang River sediments are generally moderate; among them, Fe, Co, Ni, Cd, Cr, and Pb are not harmful to the ecological environment of the Qinjiang River. Cu is not readily released because of its higher residual composition, depicting that Cu is less harmful to the ecological environment. Mn and Zn, as the primary pollution factors of the Qinjiang River, are harmful to the ecological environment. This heavy metal pollution in surface sediments of the Qinjiang River primarily comes from manganese and zinc ore mining. Manganese carbonate and its weathered secondary manganese oxide are frequently associated with a significant amount of residual copper and Cd, as a higher pH is suitable for the deposition and enrichment of these heavy metals. Lead-zinc ore and its weathering products form organic compounds with residual Fe, Co, Cr, and Ni, and their content is related to salinity. The risk assessment results of heavy metals in sediments provide an important theoretical basis for the prevention and control of heavy metal pollution in Qinjiang River.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3