Waste Heat Recovery Systems with Isobaric Expansion Technology Using Pure and Mixed Working Fluids

Author:

Roosjen SanderORCID,Glushenkov Maxim,Kronberg AlexanderORCID,Kersten Sascha

Abstract

Economic expedience of waste heat recovery systems (WHRS), especially for low temperature difference applications, is often questionable due to high capital investments and long pay-back periods. By its simple design isobaric expansion (IE) machines could provide a viable pathway to utilize otherwise unprofitable waste heat streams for power generation and particularly for pumping liquids and compression of gases. Different engine configurations are presented and discussed. A new method of modelling and calculation of the IE process and efficiency is used on IE cycles with various pure and mixtures as a working fluid. Some interesting cases are presented. It is shown in this paper, that the simplest non-regenerative IE engines are efficient at low temperature differences between a heat source and heat sink. Efficiency of non-regenerative IE process with pure working fluid can be very high approaching Carnot efficiency at low pressure and heat source/heat sink temperature differences. Regeneration permits to increase efficiency of the IE-cycle to some extent. Application of mixed working fluids in combination with regeneration permits to significantly increase the range of high efficiencies to much larger temperature and pressure differences.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3