Abstract
Background/Objectives: Accurate prediction of stock prices is an extremely challenging task because of factors such as political conditions, global economy, unexpected events, market anomalies, and relevant companies’ features. In this work, the random forest has been used to forecast the prices of the four major Greek systemic banks Methods/Analysis: We make use of a set of financial variables based on intraday data: (i) Open stock price, (ii) High stock price, (iii) Low stock price, and (iv) Close stock price of a particular Greek systemic bank. Results/Findings: The variables used here are crucial in predicting systemic banks' stock closing prices. These provide a better prediction of the next day's closing price of the bank series. Novelty /Improvement: To our knowledge, this is the first study that employs machine learning techniques in Greek systemic banks.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Applying Big Data Technologies in Tourism Industry: A Conceptual Analysis;Tourism, Travel, and Hospitality in a Smart and Sustainable World;2023