Physico-Chemical Characterization of Agricultural Residues as Precursors for Activated Carbon Preparation

Author:

Canales Flores Roberto Antonio,Prieto García Francisco,Otazo Sánchez Elena MaríaORCID,Bolarín Miró Ana MaríaORCID,Acevedo Sandoval Otilio Arturo

Abstract

Biomass is a promising alternative and renewable energy source that can be transformed into other value-added products such as activated carbon. In this research, barley husk, corn cob and Agave salmiana leaves were characterized to determine their chemical composition and morphology to evaluate their potentiality as precursors of activated carbons. Based on the main composition results obtained, the biomass samples have suitable chemical and physical characteristics to be considered as good precursors of activated carbons, such as carbon contents greater than 40%, ash content less than 10%, moisture content less than 30%, high volatile contents with values from 75 to 80% and a porous and fibrous morphology. The results indicate that the main compositions in the biomass were cellulose and lignin. The cellulose content was more than lignin (15–26%) for the residues selected. Specifically, a-cellulose contents with values from 52% to 79%, β-cellulose contents of 13–44%, γ-cellulose contents less than 11%, and holocellulose contents of 82–83% were determined. The thermal decomposition for the biomass samples proceeded with five stages attributed to the evaporation of some volatile compounds (70–150 ºC), to the degradation of hemicellulose (180–230 ºC), to the cellulose volatilization (250–350 ºC), to the lignin decomposition (380–550 ºC), and to the degradation of complex polymers and inorganic salts, respectively. The stage corresponding to the cellulose decomposition showed rapid mass decreased in the three residues. This results show that the cellulose and lignin content is another important parameter to evaluate the pyrolysis characteristics of a good precursor of activated carbon.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3