A Machine Learning Approach for Air Quality Prediction: Model Regularization and Optimization

Author:

Zhu Dixian,Cai Changjie,Yang Tianbao,Zhou Xun

Abstract

In this paper, we tackle air quality forecasting by using machine learning approaches to predict the hourly concentration of air pollutants (e.g., Ozone, PM2.5 and Sulfur Dioxide). Machine learning, as one of the most popular techniques, is able to efficiently train a model on big data by using large-scale optimization algorithms. Although there exists some works applying machine learning to air quality prediction, most of the prior studies are restricted to small scale data and simply train standard regression models (linear or non-linear) to predict the hourly air pollution concentration. In this work, we propose refined models to predict the hourly air pollution concentration based on meteorological data of previous days by formulating the prediction of 24 hours as a multi-task learning problem. It enables us to select a good model with different regularization techniques. We propose a useful regularization by enforcing the prediction models of consecutive hours to be close to each other, and compare with several typical regularizations for multi-task learning including standard Frobenius norm regularization, nuclear norm regularization, ℓ2,1 norm regularization. Our experiments show the proposed formulations and regularization achieve better performance than existing standard regression models and existing regularizations.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Models Predicting PM 2.5 Concentrations—A Review;Advances in Intelligent Systems and Computing;2021-11-01

2. Comparative Analysis of Machine Learning Regression Algorithms on Air Pollution Dataset;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2020-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3