Abstract
Hyperspectral reflectance imaging is an emerging method for rapid non-invasive quantitative screening of plant traits. This method is essential for high-throughput phenotyping and hence for accelerated breeding of crop plants as well as for precision agriculture practices. However, extraction of sensible information from reflectance images is hindered by the complexity of plant optical properties, especially when they are measured in the field. We propose using reflectance indices (Plant Senescence Reflectance Index, PSRI; Anthocyanin Reflectance Index, ARI; and spectral deconvolution) previously developed for remote sensing of vegetation and point-based reflectometers to infer the spatially resolved information on plant development and biochemical composition using ripening apple fruit as the model. Specifically, the proposed approach enables capturing data on distribution of chlorophylls and primary carotenoids as well as secondary carotenoids (both linked with fruit ripening and leaf senescence during plant development) as well as the information on spatial distribution of anthocyanins (known as stress pigments) over the plant surface. We argue that the proposed approach would enrich the phenotype assessments made on the base of reflectance image analysis with valuable information on plant physiological condition, stress acclimation state, and the progression of the plant development.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献