Evaluation of Contributing Factors Affecting Number of Vehicles Involved in Crashes Using Machine Learning Techniques in Rural Roads of Cosenza, Italy

Author:

Guido Giuseppe,Shaffiee Haghshenas SinaORCID,Shaffiee Haghshenas Sami,Vitale AlessandroORCID,Astarita VittorioORCID,Park Yongjin,Geem Zong WooORCID

Abstract

Evaluation of road safety is a critical issue having to be conducted for successful safety management in road transport systems, whereas safety management is considered in road transportation systems as a challenging task according to the dynamic of this issue and the presence of a large number of effective parameters on road safety. Therefore, evaluation and analysis of important contributing factors affecting the number of crashes play a key role in increasing the efficiency of road safety. For this purpose, in this research work, two machine learning algorithms including the group method of data handling (GMDH)-type neural network and a combination of support vector machine (SVM) and the grasshopper optimization algorithm (GOA) are employed for evaluating the number of vehicles involved in the accident based on the seven factors affecting transport safety including the Daylight (DL), Weekday (W), Type of accident (TA), Location (L), Speed limit (SL), Average speed (AS) and Annual average daily traffic (AADT) of rural roads of Cosenza in southern Italy. In this study, 564 data sets of rural areas were investigated and relevant effective parameters were measured. In the next stage, several models were developed to investigate the parameters affecting the safety management of road transportation for rural areas. The results obtained demonstrated that "Average speed" has the highest level and "Weekday" has the lowest level of importance in the investigated rural area. Finally, although the results of both algorithms were the same, the GOA-SVM model showed a better degree of accuracy and robustness than the GMDH model.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3