Research and Implementation of Low-Power Anomaly Recogni-Tion Method for Intelligent Manhole Covers

Author:

Guo Jiahu,Wang KaiORCID,Sun Jianquan,Jia Youcheng

Abstract

This paper addresses the difficulty of balancing real-time response and low power consumption in intelligent manhole cover application scenarios. It proposes a method to distinguish normal and abnormal events by segmenting the boundary where the acceleration of the intelligent manhole cover deviates from a set threshold and lasts for a certain period, based on the difference in vibration patterns of the intelligent manhole cover when a normal event and an abnormal event occur. This paper uses digital output motion sensor data autonomous data fusion to implement the pattern mentioned above recognition algorithm, which reduces the MCU computing and working time and the overall power consumption of the system while meeting the real-time response requirements. The test results demonstrate that the method has a high rate of anomaly recognition accuracy. The method ensures the system's real-time response capability, and the actual low power consumption test demonstrates that the device can operate continuously for 9.5 years. The low power consumption index exceeds the requirements of the existing national standard, thereby resolving the issue that it is challenging to balance intelligent manhole cover abnormality recognition and low power consumption.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3