Impact of Covid-19 Pandemic on Demand and Demand Forecasting in a Furniture Wholesale Company

Author:

Al-Haidari Riadh,Al-Rawashdeh Shrouq,Zeidan Adam,Omambala Joshua,Nagarur Nagendra

Abstract

Accurate demand forecasting plays a critical role in most furniture businesses’ operational, tactical, and strategic decisions, as the demand in the furniture business is considered seasonal and becomes more complex in crises. In this work, a neural network model using the Long Short-Term Memory (LSTM) method was developed to forecast the demand for specific product groups. LSTM is a leading deep learning model for time series prediction, particularly seasonal, multi-item, and non-linear situations. The developed model was used to predict the demand based on old data before the Covid-19 pandemic and recent data of the first months of the pandemic as a fast response to the crisis. In addition, a comparison study was conducted between the developed model and the traditional planning inventory used by furniture businesses that provided us with the data. The results showed that the Covid-19 pandemic significantly impacted demand forecasting. Also, the fast response to Covid-19 pandemic has slightly increased the model performance. Finally, the comparison study demonstrated that our model is robust and better than the traditional demand forecasting method. Therefore, the developed model may help the business improve inventory and production planning to create a more flexible supply chain.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Covid-19 Pandemic on Demand and Demand Forecasting in a Furniture Wholesale Company;Lecture Notes in Management and Industrial Engineering;2024

2. Furniture market demand forecasting using machine learning approaches;Journal of Physics: Conference Series;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3