Abstract
Emotion detection from the text is an important and challenging problem in text analytics. The opinion-mining experts are focusing on the development of emotion detection applications as they have received considerable attention of online community including users and business organization for collecting and interpreting public emotions. However, most of the existing works on emotion detection used less efficient machine learning classifiers with limited datasets, resulting in performance degradation. To overcome this issue, this work aims at the evaluation of the performance of different machine learning classifiers on a benchmark emotion dataset. The experimental results show the performance of different machine learning classifiers in terms of different evaluation metrics like precision, recall ad f-measure. Finally, a classifier with the best performance is recommended for the emotion classification.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献