Multi-Label Classification for Fault Diagnosis of Rotating Electrical Machines

Author:

Dineva Adrienn,Mosavi Amir,Gyimesi Mate,Vajda Istvan

Abstract

Primary importance is devoted to Fault Detection and Diagnosis (FDI) of electrical machine and drive systems in modern industrial automation. The widespread use of Machine Learning techniques has made it possible to replace traditional motor fault detection techniques with more efficient solutions that are capable of early fault recognition by using large amounts of sensory data. However, the detection of concurrent failures is still a challenge in the presence of disturbing noises or when the multiple faults cause overlapping features. The contribution of this work is to propose a novel methodology using multi-label classification method for simultaneously diagnosing multiple faults and evaluating the fault severity under noisy conditions. Performance of various multi-label classification models are compared. Current and vibration signals are acquired under normal and fault conditions. The applicability of the proposed method is experimentally validated under diverse fault conditions such as unbalance and misalignment.

Publisher

MDPI AG

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Prediction of Ball Bearings using Machine Learning: A Review;Journal of Mines, Metals and Fuels;2023-03-15

2. Deep Learning Models: An Understandable Interpretable Approach;Deep Learning for Security and Privacy Preservation in IoT;2021

3. Machine-Learning Based Fault Diagnosis of Electrical Motors Using Acoustic Signals;Data Intelligence and Cognitive Informatics;2021

4. Urban Train Soil-Structure Interaction Modeling and Analysis;Lecture Notes in Networks and Systems;2020

5. Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology;Lecture Notes in Networks and Systems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3