PVTReID: A Quick Person Re-Identification Based Pyramid Vision Transformer

Author:

Han Ke,Wang QianLongORCID,Zhu Mingming,Zhang Xiyan

Abstract

Due to the influence of background conditions, lighting conditions, occlusion issues and the image resolution, how to extract robust person features is one of the difficulties in ReID research. Vision in Transformers (ViT) has achieved significant results in the field of computer vision. However, the existing problems still limit its application in ReID due to slow extraction of person features and difficulty in utilizing local features of people. To solve the mentioned problems, we utilize Pyramid Vision Transformer (PVT) as the backbone of feature extraction and propose a PVT-based ReID method in conjunction with other studies. Firstly, some improvements suitable for ReID are used on the PVT backbone, and we establish a basic model by using powerful methods verified on CNN-based ReID. Secondly, in an effort to further promote the robustness of the person features extracted by the PVT backbone, two new modules are designed. (1) The local feature clustering (LFC) is recommend to enhance the robustness of person features by calculating the distance between local features and global feature to select the most discrete local features and clustering them. (2) The side information embeddings (SIE) are used to encode non-visual information and send it into the network for training to reduce its impact on person features. Finally, the experiments show that PVTReID has achieved excellent results in ReID datasets and are 20% faster on average than CNN-based ReID methods.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3