Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches

Author:

BORAH PANKAJ,Micheli LeonardoORCID,Sarmah NabinORCID

Abstract

Soiling accumulated on a photovoltaic (PV) module can significantly reduce the transmittance of the cover glass, resulting in power losses and consequent economic losses. Natural atmospheric parameters influence the accumulation of soiling at the various geographic locations. In this paper, the approaches and outcomes of the research studies on either indoor (simulator-based) or outdoor (field-based) PV soiling have been thoroughly reviewed. Different parameters depicted for the power loss of PV modules are analyzed individually and presented. Moreover, this study delves into a detailed examination of the key factors influencing dust depositions on PV modules in various geographical regions, with a particular focus on their relationship with climatic conditions. This way, probable future research directions to quantify soiling losses are identified. In addition, different loss prevention and mitigation techniques are also reviewed. This makes it possible to highlight effective strategies and pinpoint potential future research lines in these areas.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3