Comparison of CMIP6 and CMIP5 Models in Simulating Mean and Extreme Precipitation over East Africa

Author:

AYUGI Brian,Zhidong Jiang,Zhu Huanhuan,Ngoma HamidaORCID,Babaousmail Hassen,Rizwan KarimORCID,Dike Victor

Abstract

This study examines the improvement in coupled intercomparison project phase six (CMIP6) models against the predecessor CMIP5 in simulating mean and extreme precipitation over the East Africa region. The study compares the climatology of the precipitation indices simulated by the CMIP models with the CHIRPS dataset using robust statistical techniques for 1981 – 2005. The results display the varying performance of the general circulation models (GCMs) in the simulation of annual and seasonal precipitation climatology over the study domain. CMIP6-MME shows improved performance in the local annual mean cycle simulation with a better representation of two peaks, especially the MAM rainfall relative to its predecessor. Moreover, simulation of extreme indices is well captured in CMIP6 models relative to its predecessor. The CMIP6-MME performed better than the CMIP5-MME with lesser biases in simulating SDII, CDD, and R20mm over East Africa. Remarkably, most CMIP6 models are unable to simulate extremely wet days (R95p). A few CMIP6 models (e.g., NorESM2-MM and CNRM-CM6-1) depicts robust performance in reproducing the observed indices across all analyses. Conversely, OND season shows the overestimation of some indices (i.e., R95p, PRCPTOT), except for SDII, CDD, and R20mm. Consistent with other studies, the mean ensemble performance for both CMIP5/6 shows better performance due to the cancellation of some systematic errors in the individual models. Generally, the CMIP6 depicts improved performance in the simulation of MAM season akin CMIP5 models. However, the new model generation is still marred with uncertainty, thereby depicting substandard performance over the East Africa domain. This calls for further investigation of attribution studies into the sources of persistent systematic biases and a prerequisite for identifying individual models with robust features that can accurately simulate observed patterns for future usage.

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3