Fog Computing: Towards Dynamically Controlling the Offloading Threshold and Managing Fog Resources in Online Dynamic Systems

Author:

Alenizi FatenORCID,Rana Omer

Abstract

Fog computing is a potential solution to overcome the shortcomings of the cloud computing processing of IoT tasks. These drawbacks can be high latency, location awareness and security, and it is attributed to the distance between IoT devices and servers, network congestion and other variables. Although fog computing has evolved as a solution to these challenges, it is known for having limited resources that need to be consciously utilised, or any of its ad-vantages would be lost. Computational offloading and resource management are critical concerns to be considered to get maximum benefit of the available resource at fog computing systems and benefit from its advantages. Computational offloading and resource management are important issues to be considered to get maximum benefit of the available resource at fog computing systems and benefit from its advantages. In this article, in vehicular traffic applications, we introduce a dynamic online offloading scheme that involves the execution of delay-sensitive ac-tivities. This paper proposes an architecture of a fog node that enables a fog node to adjust its offloading threshold dynamically (i.e., the criteria by which a fog node decides whether tasks should be offloaded rather than executed locally) using two algorithms: dynamic task scheduling (DTS) and dynamic energy control (DEC). These algorithms seek to solve an optimisation problem aimed at minimising overall delay, improving throughput, and minimising energy consumption at the fog layer, while maximising the use of resource-constrained fog nodes. Compared with other benchmarks, our approach can reduce the delay by up to 95.38% and reduce energy consumption by up to 67.71% in fog nodes. Additionally, this approach enhances throughput by 71.08%.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3