Spatio-Temporal Crime Predictions by Leveraging Artificial Intelligence for Citizens Security in Smart Cities

Author:

Butt Umair MuneerORCID,Letchmunan Sukumar,Hassan Fadratul Hafinaz,Ali Mubashir,Baqir Anees,Koh Tieng WeiORCID,Sherazi Hafiz Husnain RazaORCID

Abstract

Smart city infrastructure has a significant impact on improving the quality of humans life. However, a substantial increase in the urban population from the last few years is posing challenges related to resource management, safety, and security. In order to ensure safe mobility and security in the smart city environment, this paper proposes a novel Artificial Intelligence (AI) based approach empowering the authorities to better visualize the threats and to help them identify the highly-reported crime zones yielding greater predictability of crime hot-spots in a smart city. To this end, it first investigates the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) to detect the hot-spots that have a higher risk of crimes to be committed. Second, for crime prediction, Seasonal Auto-Regressive Integrated Moving Average (SARIMA) exploited in each dense crime region to predict the number of crimes in the future with spatial and temporal information. The proposed HDBSCAN and SARIMA based crime prediction model is evaluated on ten years of crime data (2008-2017) for New York City (NYC). The accuracy of the model is measured by considering different time period scenarios i.e. (a) year-wise, i.e., for each year and (b) for the whole period of ten years, using an 80:20 ratio where 80\% data was used for training and 20\% data was used for testing. The proposed approach outperforms with an average Mean Absolute Error (MAE) of 11.47.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting Crime Event Rate with a CNN-LSTM Model;Innovative Data Communication Technologies and Application;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3