Abstract
A review of influence of drag-reducing agents on curved pipe flows is presented in this work. In addition, this review outlined proposed mechanism, friction factor and fluid flux models for drag-reducing agents in curved pipe flows. Our finding reveals that drag reduction by additives in curved pipes is quite significant but generally lower than the corresponding drag reduction in straight pipes. It decreases with increase in curvature ratio and more pronounced in the transition and turbulent flow regimes. Drag reduction strongly depends on the polymers and surfactants’ concentrations as well as the bubble fraction of micro-bubbles. It is also reported that drag reduction in curved pipes depends on temperature and existence of dissolved salts in the fluids. Maximum drag reduction asymptote differed between straight and curved pipes and between polymer and surfactant. No definite conclusion could be drawn as regards drag reduction for two-phase flow in curved pipes due to the limited studies in this area. Many questions such as the mechanism of drag reduction in curved pipes and how drag-reducing agents interact with secondary flows still remained unanswered. Hence, some research gaps have been identified with recommendations for areas of future researches.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献