Electric Two-Wheeler Vehicle Integration into Rural Off-grid Photovoltaic System in Kenya

Author:

Bugaje Aminu,Ehrenwirth Mathias,Trinkl Christoph,Zörner Wilfried

Abstract

Two-wheeler vehicles are the most significant mode of transportation for Kenyans in both rural and urban regions thereby contributing to local air pollution, and greenhouse gas emissions (GHG). The transition to electric two-wheeler vehicles can make a significant contribution to reducing GHG and improving the socio-economic lives of people living in rural Kenya. Re-newable energy systems can considerably contribute to the charging of electric two-wheeled vehicles, thus leading to the reduction of carbon emissions and the expansion of renewable energy penetration in rural Kenya. Therefore, this paper focuses on integrating and modelling electric two-wheeled vehicles (e-bikes) into an off-grid photovoltaic Water-Energy Hub located in the Lake Victoria Region of Western Kenya using the Conventional and Renewable Energy Opti-mization (CARNOT) Toolbox in MATLAB / Simulink. Electricity demand data obtained from the Water-Energy Hub was investigated and analysed. Potential solar energy surplus was identified and electric two-wheeler vehicles were integrated based on the surplus. A field measurement investigation on the energy consumption of the electric two-wheeler vehicles based on the rider’s driving behaviour was also carried. The annual electricity demand of 27,267 kWh, photovoltaic (PV) electricity production of 37,785 kWh with an electricity deficit of 370 kWh were obtained from the simulation results. To reduce the electricity deficit, a load optimisation algorithm was de-veloped to optimally integrate the electric 2-wheeler vehicle into the Water-Energy Hub. It was found that using the load optimisation algorithm, the annual electricity deficit was reduced to 1 kWh and the annual electricity demand was increased by 11% (30,767 kWh) which is enough to charge 4 additional electric two-wheeler batteries daily.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3