Abstract
Magnesium nanoparticles of various mean diameters (53 – 239 nm) were synthesized herein via Pulsed Laser Ablation in Liquid (PLAL) from millimeter sized magnesium powders within iso-propyl alcohol. It was observed via a 3x3 full factorial DOE that the processing parameters can control the nanoparticle distribution to produce three size-distribution types (bimodal, skewed and normal). Ablation times of 2, 5, and 25 minutes where investigated. An ablation time of 2 minutes produced a bimodal distribution with the other types seen at higher periods of processing. Mg nanoparticle UV-Vis absorbance at 204 nm increased linearly with increasing ablation time, indicating an increase in nanoparticle count. The colloidal density (mg/ml) generally increased with increasing nanoparticle mean diameter as noted via increasing UV-vis absorbance. High la-ser scan speeds (within the studied range of 3000 - 3500 mm/s) tend to increase the nanoparticle count/yield. For the first time, the effect of scan speed on colloidal density, UV-vis absorbance and nanoparticle diameter from metallic powder ablation was investigated and is reported herein. The nanoparticles formed dendritic structures after being drop cast on aluminum foil as observed via FESEM analysis. Dynamic light scattering was used to measure the size of the nanoparticles. Magnesium nanoparticles have promising use in the fabrication of wearables, such as in conductive tracks or battery electrodes, owing to their low heat capacity, high melting point and bio-compatibility.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献