Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film–Based Solar Cell with Different Non-Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS-1D Software

Author:

Zyoud Samer H.ORCID,Zyoud Ahed H.,Ahmed Naser M.,Abdekader AtefORCID

Abstract

Cadmium telluride (CdTe), a metallic dichalcogenide material, has been utilized as an absorber layer for thin film-based solar cells with appropriate configurations, and the SCAPS-1D structures program has been used to evaluate the results. In both known and developing thin film photovoltaic systems, a CdS thin film buffer layer has been frequently employed as a traditional n-type heterojunction partner. In this study, numerical simulation was used to find a suitable non-toxic material for the buffer layer instead of CdS, among various types of buffer layers (ZnSe, ZnO, ZnS, and In2S3), and carrier concentrations for the absorber layer (NA) and buffer layer (ND) were varied to determine the optimal simulation parameters. carrier concentrations (NA from 2 x 1012 cm-3 to 2 x 1017 cm-3 and ND from 1 x 1016 cm-3 to 1 x 1022 ??−3) have been differed. The results showed that the CdS as buffer layer based CdTe absorber layer solar cell has the highest efficiency (?%) of 17.43%. Furthermore, high conversion efficiencies of 17.42% and 16.27% have been found for ZnSe and ZnO based buffer layers, respectively. As a result, ZnO and ZnSe are potential candidates for replacing the CdS buffer layer in thin-film solar cells. Here, the absorber (CdTe) and buffer (ZnSe) layers were chosen to improve the efficiency by finding the optimal density of the carrier concentration (acceptor and donor). The simulation findings above provide helpful recommendations for fabricating high-efficiency metal oxide-based solar cells in the lab.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3