Wheat Yield Forecasting Based on Landsat NDVI and SAVI Time Series

Author:

Adeniyi Odunayo David,Szabo Andrea,Tamás János,Nagy Attila

Abstract

Due to increase demand of food grain in the world, assessment of yield before actual production is important in making policies and decisions in agricultural production system. For a large area, forecast models developed from vegetation indices derived from remote sensing satellite data possesses the potential to give quantitative and timely information on crops over large areas. Different vegetation indices are being made used for this purpose, however, their efficiency in estimating crop yield is needed to be certainly tested. In this study, wheat yield forecast was derived by regressing ground truthing yield data against time series of spatial vegetation indices for the 2013 to 2019 growing seasons. These spatial vegetation indices derived from Landsat 8 image data: Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were compared to evaluate the most appropriate index that performs better in forecasting wheat production at Karcag, Kunhegyes and Ecsegfalva settlements in Jász-Nagykun-Szolnok county, in the Northern Great Plain region of central Hungary. The best time for making wheat yield prediction with Landsat 8- SAVI and NDVI was found to be the beginning of ripening period (160th day of the year) with higher correlation between the vegetation indices and the wheat yield. The validation results revealed that the model from SAVI provides more consistent and accurate forecasts yield compared to NDVI. The SAVI model forecast yield for the validation years, 2018 and 2019 were within 6.00% and 4.41% of the final reported values while that of NDVI model were within 8.31% and 6.27%. Nash-Sutcliffe efficiency index is positive with E1= 0.99 for the model from SAVI and for NDVI, E1=0.57, which connote that the forecasting method developed and evaluated performs acceptable forecast efficiency.

Publisher

MDPI AG

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review on wheat yield prediction based on remote sensing;Multimedia Tools and Applications;2024-07-25

2. Sentinel‐2 accurately estimated wheat yield in a semi-arid region compared with Landsat 8;International Journal of Remote Sensing;2023-07-03

3. Rice yield prediction model using normalized vegetation and water indices from Sentinel-2A satellite imagery datasets;Asia-Pacific Journal of Regional Science;2023-05-15

4. Application of normalized difference vegetation index in agriculture to estimate rice yield;8TH BRUNEI INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY 2021;2023

5. The software solution for precise agriculture using the NDVI index;2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3