One Shot Cluster Based Approach for the Detection of COVID-19 from Chest X-Ray Images

Author:

Aradhya V.N. Manjunath,Mahmud MuftiORCID,Agarwal Basant,Guru D.S.,Kaiser M. ShamimORCID

Abstract

Corona virus disease (COVID-19) has infected over more than 10 million people around the globe and killed at least 500K worldwide by the end of June 2020. As this disease continues to evolve and scientists and researchers around the world now trying to find out the way to combat this disease in most effective way. Chest X-rays are widely available modality for immediate care in diagnosing COVID-19. Precise detection and diagnosis of COVID-19 from these chest X-rays would be practical for the current situation. This paper proposes one shot cluster based approach for the accurate detection of COVID-19 chest x-rays. The main objective of one shot learning (OSL) is to mimic the way humans learn in order to make classification or prediction on a wide range of similar but novel problems. The core constraint of this type of task is that the algorithm should decide on the class of a test instance after seeing just one test example. For this purpose we have experimented with widely known Generalized Regression and Probabilistic Neural Networks. Experiments conducted with publicly available chest x-ray images demonstrate that the method can detect COVID-19 accurately with high precision. The obtained results have outperformed many of the convolutional neural network based existing methods proposed in the literature.

Publisher

MDPI AG

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3