Author:
Zhang Wei,Peng Gaoliang,Li Chuanhao,Chen Yuanhang,Zhang Zhujun
Abstract
Intelligent fault diagnosis techniques have replaced the time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning model can improve the accuracy of intelligent fault diagnosis with the help of its multilayer nonlinear mapping ability. This paper has proposed a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in first convolutional layer for extracting feature and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform state of the art DNN model which is based on frequency features under different working load and noisy environment.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献