Multidimensional Structural Characterization is Required to Detect and Differentiate Among Moderate Disturbance Agents

Author:

Atkins Jeff W.ORCID,Bond-Lamberty Ben,Fahey Robert T.,Hardiman Brady S.,Haber Lisa,Stuart-Haëntjens Ellen,LaRue Elizabeth,McNeil Brenden,Orwig David A.,Stovall Atticus E. S.,Tallant Jason,Walter Jonathan A.,Gough Christopher M.

Abstract

The study of vegetation community and structural change has been central to ecology for over a century, yet how disturbances reshape the physical structure of forest canopies remains relatively unknown. Moderate severity disturbance including fire, ice storms, insect and pathogen outbreaks, affects different canopy strata and plant species, which may give rise to variable structural outcomes and ecological consequences. Terrestrial lidar (light detection and ranging) offers an unprecedented view of the interior arrangement and distribution of canopy elements, permitting the derivation of multidimensional measures of canopy structure that describe several canopy structural traits with known linkages to ecosystem functioning. We used lidar-derived canopy structural measured within a machine learning framework to detect and differentiate among various disturbance agents, including moderate severity fire, ice storm damage, age-related senescence, hemlock woolly adelgid, beech bark disease, and chronic acidification. We found that disturbance agents such as fire and ice storms primarily affected the amount and position of vegetation within canopies, while acidification, pathogen and insect infestation, and senescence altered canopy arrangement and complexity. Only two of the six disturbance agents significantly reduced leaf area, indicating that this commonly quantified canopy feature is insufficient to characterize many moderate severity disturbances. Rather, measures of canopy structure, including those that describe multidimensional change, are needed to characterize disturbance at moderate severities because structural changes from these events are spatially and quantitatively variable. Our findings suggest that standard disturbance detection methods, such as optical based remote sensing platforms, may currently be limited in their ability to detect, differentiate, and characterize disturbance. Further, we conclude that a more broadly inclusive definition of ecological disturbance that incorporates multiple aspects of canopy structure change will improve the modeling, detection, and prediction of functional implications of moderate severity disturbance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3