Abstract
Machine learning has become an increasingly ubiquitous technology, as big data continues to inform and influence everyday life and decision-making. Currently in healthcare, as well as in most other industries, the two most prevalent machine learning paradigms are supervised learning and transfer learning. Both practices rely on large-scale, manually annotated datasets to train increasingly complex models. However, the requirement of data to be manually labeled leaves an excess of unused, unlabeled data available in both public and private data repositories. Self-supervised learning (SSL) is a growing area of machine learning that has the ability to take advantage of unlabeled data. Contrary to other machine learning paradigms, SSL algorithms create artificial supervisory signals from unlabeled data and pretrain algorithms on these signals. The aim of this review is two-fold: firstly, we provide a formal definition of SSL, divide SSL algorithms into their four unique subsets, and review the state-of-the-art published in each of those subsets between the years of 2014-2020. Second, this work surveys recent SSL algorithms published in healthcare, in order to provide medical experts with a clearer picture of how they can integrate SSL into their research, with the objective of leveraging unlabeled data.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献