Abstract
Dengue is the most prevalent arthropod-borne disease globally and affects approximately 2.5 billion people living in over 100 countries. The increasing geographic expansion of Aedes aegypti mosquitoes which transmit the virus has made dengue fever a global health concern. There are currently no approved antivirals available to treat dengue, and the only approved vaccine used in some countries is limited to seropositive patients. Treatment of dengue therefore remains largely supportive to date; hence research efforts are being intensified for the development of antivirals against dengue. The NS3 and NS5 nonstructural proteins have been the major targets for dengue antiviral development due to their indispensable enzymatic and biological functions in the viral replication process. NS5 is the largest and most conserved nonstructural protein encoded by flaviviruses including dengue. Its multifunctionality makes it an attractive target for antiviral development against dengue, but research efforts are hindered due to its limited structural characterization compared to the NS5 of other flaviviruses like the Zika virus. Increase in structural insights into the dengue NS5 protein will accelerate drug discovery efforts focused on NS5 as an antiviral target. In this review, we will give an overview of the current state of therapeutic development against dengue.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献