Estimation of Real-world Fuel Consumption Rate of Light-duty Vehicles Based on Big Data

Author:

Zeng Isabella Yunfei,Tan Shiqi,Xiong JianliangORCID,Ding Xuesong,Li Yawen,Wu TianORCID

Abstract

Private vehicle travel is the most basic mode of transportation, and the effective control of the real-world fuel consumption rate of light-duty vehicles plays a vital role in promoting sustainable economic development as well as achieving a green low-carbon society. Therefore, the impact factors of individual carbon emission must be elucidated. This study builds five different models to estimate real-world fuel consumption rate of light-duty vehicles in China. The results reveal that the Light Gradient Boosting Machine (LightGBM) model performs better than the linear regression, Naïve Bayes regression, Neural Network regression, and Decision Tree regression models, with mean absolute error of 0.911 L/100 km, mean absolute percentage error of 10.4%, mean square error of 1.536, and R squared (R2) of 0.642. This study also assesses a large number of factors, from which three most important factors are extracted, namely, reference fuel consumption rate value, engine power and light-duty vehicle brand. Furthermore, a comparative analysis reveals that the vehicle factors with greater impact on real-world fuel consumption rate are vehicle brand, engine power, and engine displacement. Average air pressure, average temperature, and sunshine time are the three most important climate factors.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3