Abstract
The holy grail of Artificial Intelligence (AI) has been to mimic human intelligence using computing machines. Autopoiesis which refers to a system with well-defined identity and is capable of re-producing and maintaining itself and cognition which is the ability to process information, apply knowledge, and change the circumstance are associated with resilience and intelligence. While classical computer science (CCS) with symbolic and sub-symbolic computing has given us tools to decipher the mysteries of physical, chemical and biological systems in nature and allowed us to model, analyze various observations and use information to optimize our interactions with each other and with our environment, it falls short in reproducing even the basic behaviors of living organisms. We present the foundational shortcomings of CCS and discuss the science of infor-mation processing structures (SIPS) that allows us to fill the gaps. SIPS allows us to model su-per-symbolic computations and infuse autopoietic and cognitive behaviors into digital machines. They use common knowledge representation from the information gained using both symbolic and sub-symbolic computations in the form of system-wide knowledge networks consisting of knowledge nodes and information sharing channels with other knowledge nodes. The knowledge nodes wired together fire together to exhibit autopoietic and cognitive behaviors.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献