Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections

Author:

Rahim Muhammad Imran,Ullah Sami,Mueller Peter P.ORCID

Abstract

Medical implants made of biodegradable materials could be of advantage for temporary applications such mechanical support during bone-healing or as vascular stents to keep blood vessels open. After completion of the healing process the implant would disappear, avoiding long-term side effects or the need for surgical removal. Various corrodible metal alloys based on magnesium, iron or zinc have been proposed as sturdier and potentially less inflammatory alternative to degradable organic polymers, in particular for load-bearing applications. Despite the recent introduction of magnesium-based screws the remaining hurdles to routine clinical applications are still challenging, such as limiting mechanical material characteristics or unsuitable corrosion characteristics. Here, salient features and clinical prospects of currently investigated biodegradable implant materials are summarized with a main focus on magnesium alloys. A mechanism of action for the stimulation of bone growth due to the exertion of mechanical force by magnesium corrosion products is discussed. To explain divergent in vitro and in vivo effects of magnesium a novel model for bacterial biofilm infections is proposed which predicts crucial consequences antibacterial implant strategies.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3