Hydrological Modeling in Tropical Regions via TopModel. Study Case: Central Sector of the Middle Magdalena Valley - Colombia

Author:

Arenas-Bautista Maria CristinaORCID,Arboleda-Obando Pedro F.,Duque-Gardeazabal Nicolas,Saavedra-Cifuentes Edwin,Donado Leonardo D.

Abstract

Hydrological modeling allows us to make a comprehensive assessment of the interaction between dynamics of the hydrological cycle, climate conditions, and land use.  These modeling results are relevant in water resources management field. We use TopModel (TOPography based hydrological MODEL for the hydrological modeling of an area of 17 000 km2 in the Middle Magdalena Valley (MMV), a tropical basin located in Colombia. This study is located in the intertropical convergence zone (ITCZ) which is characterized by special meteorological conditions and fast water fluxes over the year. This area has been subjected to significant land use changes, as a result of intense economic activities, e.g., agriculture, hydropower energy and oil & gas production (Avellaneda, 2003). The proposed model is based on a record of 12 years of: i.) daily precipitation data from observed gauges, ii.) daily evapotranspiration data from temperature data and iii.) daily streamflow data as observed data. A calibration process was performed using data from 2000 to 2008, and a validation was performed with data from 2009 to 2012. The Nash-Sutcliffe coefficient was used as an objective function to assess the quality of these processes (values of this metric are between 0.74 and 0.73 respectively, for model calibration and validation). The results show us an adequate performance of the model in areas of the tropical region and allow us to analyze the relationship between water storage capacity in the soils of the area with subsurface runoff. This conclusion is consistent with the characteristics of the region. The calibrated model provides an idea about the hydrological functioning of the basin and estimates an approximation of the groundwater recharge in the region. The estimation of the recharge is important to quantify the interaction of surface water and groundwater, especially during the dry season, due to its importance in the analysis of scenarios with climate variability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3