Vertical Distribution of Aerosols During Deep-convective Event in the Himalaya Using WRF-Chem Model at Convection Permitting Scale

Author:

Singh Prashant,Sarawade Pradip,Adhikary Bhupesh

Abstract

The Himalayan region is facing frequent cloud burst and flood events during the summer monsoon e.g., Kedarnath flood of 2013. It was one of the most devastating event which claimed thousands of human lives, heavy infrastructure and economic losses. Fast moving monsoon, pre-existing westerlies, and orographic uplifting was reported as the major reason for cloud burst over Kedarnath in previous research. Our study illustrates the vertical distribution of aerosols during this event and its possible role using Weather Research and Forecasting model coupled with chemistry (WRF-Chem) simulations. Model performance evaluation shows that simulations can capture the spatial and temporal pattern of observed precipitation during this event. Model simulation at 25km and 4km horizontal grid resolution without any changes in physical parameterization shows very minimal average difference in precipitation. Whereas simulation at convection permitting scale shows de-tailed information related to parcel motion compared to coarser resolution simulation. This indicates parameterization at different resolution needs to examine for better outcome. The result shows up to 20-50% changes in rain over area near Kedarnath due to the presence of aerosols. The simulation at both resolution shows significant vertical transport of natural (increases by 50%+) and anthropo-genic aerosols (increases by 200%+) during the convective event. Which leads to significant changes in cloud property, rain concentration and ice concentration in presence of aerosols. Due to aero-sol–radiation feedback, the important instability indices like convective available potential energy, convective inhibition energy, vorticity etc. shows changes near Kedarnath.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3