Abstract
Information molecules of DNA and RNA should obey principles of quantum mechanics where unitary operators in form of unitary matrices have key meanings. Unitary matrices are the basis of calculations in quantum computers. This article presents some author's results, which show that matrix forms of the representation of structured systems of molecular-genetic alphabets can be considered as sets of sparse unitary matrices related with phenomenologic features of the degeneracy of the genetic code. These sparse unitary matrices have orthogonal systems of functions in their rows and columns. A complementarity exists among some unitary genetic matrices in relation each other. Decompositions of numeric genetic matrices into sets of sparse unitary matrices are connected with the logical operation of modulo-2 addition used in quantum computers as well. Tensor (or Kronecker) families of unitary genetic matrices with their fractal-like properties are also considered. The described results are discussed in the frame of development of quantum-information approaches for modeling genetic systems.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献