When to Use Large Language Model: Upper Bound Analysis of BM25 Algorithms in Reading Comprehension Task

Author:

Liu TingzhenORCID,Xiong QianqianORCID,Zhang Shengxi

Abstract

Large language model (LLM) is a representation of a major advancement in AI, and has been used in multiple natural language processing tasks. Nevertheless, in different business scenarios, LLM requires fine-tuning by engineers to achieve satisfactory performance, and the cost of achieving target performance and fine-tuning may not match. Based on the Baidu STI dataset, we study the upper bound of the performance that classical information retrieval methods can achieve under a specific business, and compare it with the cost and performance of the participating team based on LLM. This paper gives an insight into the potential of classical computational linguistics algorithms, and which can help decision-makers make reasonable choices for LLM and low-cost methods in business R&D.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Separated Model for Stopping Point Prediction of Autoregressive Sequence;2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS);2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3