Online Learning for Wearable EEG-based Emotion Classification

Author:

Moontaha Sidratul,Schumann Franziska Elisabeth Friederike,Arnrich BertORCID

Abstract

Emotions are indicators of affective states and play a significant role in human daily life, behavior, and interactions. Giving emotional intelligence to the machines could, for instance, facilitate early detection and prediction of (mental) diseases and symptoms. Electroencephalography (EEG) -based emotion recognition is being widely applied because it measures electrical correlates directly from the brain rather than the indirect measurement of other physiological responses initiated by the brain. The recent development of non-invasive and portable EEG sensors makes it possible to use them in real-time applications. Therefore, this paper presents a real-time emotion classification pipeline, which trains different binary classifiers for the dimensions of Valence and Arousal from an incoming EEG data stream. After achieving a 23.9% (Arousal) and 25.8% (Valence) higher f1-score on the state-of-art AMIGOS dataset, this pipeline was applied to the dataset achieved by an emotion elicitation experimental framework developed within the scope of this thesis. Following two different protocols, 15 participants were recorded using two different consumer-grade EEG devices while watching 16 short emotional videos in a controlled environment. For an immediate label setting, the mean f1-score of 87% and 82% were achieved for Arousal and Valence, respectively. In a live scenario, while continuously being updated on the incoming data stream with delayed labels, the pipeline proved to be fast enough to achieve predictions in real time. However, the significant discrepancy from the readily available labels on the classification scores leads to future work to include more data with frequent delayed labels in the live settings.

Publisher

MDPI AG

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3