Drug and Vaccine Design against Novel Coronavirus (2019-nCoV) Spike Protein through Computational Approach

Author:

Kumar Suresh

Abstract

The recent outbreak of the new virus in Wuhan city, China from the sea food market has led to the identification of a new strain called the corona virus and named as novel corona virus (2019-nCoV) belonging to Coronaviridae family. This has created major havoc and concern due to the mortality of 250 persons and affecting more than 10,000 people. This virus causes sudden fever, pneumonia and also kidney failure. In this study a computational approach is proposed for drug and vaccine design. The spike protein sequences were collected from a protein database and analysed with various bioinformatics tools to identify suitable natural inhibitors for the N-terminal receptor binding domain of spike protein. Also, it is attempted to identify suitable vaccine candidates by identifying B-Cell and T-cell epitopes. In the drug design, the tanshinone Iia and methyl Tanshinonate were identified as natural inhibitors based on the docking score. In the vaccine design, B-cell epitope VLLPLVSSQCVNLTTRTQLPPAYTN was found to have the highest antigenicity. FVFLVLLPL of MHC class-I allele and FVFLVLLPL of MHC class-II allele were identified as best peptides based on a number of alleles and antigencity scores. The present study identifies natural inhibitors and putative antigenic epitopes which may be useful as effective drug and vaccine candidates for the eradication of novel corona virus.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3