Broad-spectrum Antimicrobial ZnMintPc Encapsulated in Magnetic-nanocomposites with Graphene Oxide/MWCNTs Based on Bimodal Action of Photodynamic and Photothermal Effect

Author:

Cuadrado Coralia Fabiola,Díaz-Barrios AntonioORCID,Campana Kleber Orlando,Romani Eric Cardona,Quiroz Francisco Javier,Nardecchia Stefania,Debut AlexisORCID,Vizuete Karla,Niebieskikwiat Dario,Ávila Camilo Ernesto,Salazar Mateo Alejandro,Garzón-Romero Cristina CecibelORCID,Blasco-Zúñiga Ailín AmiraORCID,Rivera Miryan Rosita,Romero María PaulinaORCID

Abstract

Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. In the present work, two magnetic nanocomposites, based on Graphene Oxide (GO) and Multiwall Carbon Nanotubes (MWCNTs) were studied. The synthesis of these magnetic nanocomposites consisted of three phases: first, the synthesis of Iron Magnetic Nanoparticles (MNPs) was carried out in the presence of MWCNTs and GO using the Co-precipitation method. The second phase consisted of the adsorption of photosensitizer menthol-Zinc phthalocyanine (ZnMintPc) into MWCNTs and GO, and the third phase was the encapsulation in poly (N-vinylcaprolactam-co-poly(ethylene glycol diacrylate)) poly (VCL-co-PEGDA) polymer VCL/PEGDA a biocompatible hydrogel, in order to obtain the magnetic nanocomposites: VCL/PEGDA-MNPs-MWCNTs-ZnMintPc and VCL/PEGDA-MNPs-GO-ZnMintPc. In vitro studies were carried out using Escherichia coli and Staphylococcus aureus bacteria and the Candida albicans yeast based on the PTT/PDT effect. This research describes the optical, morphological, magnetic and photophysical characterizations of nanocomposites and their application as antimicrobial agents. It was evaluated the antimicrobial effect of magnetics nanocomposites based on the Photodynamic/Photothermal (PDT/PTT) effect; for this purpose, doses of 65 mW cm-2 at 630 nm of light were used. The VCL/PEGDA-MNPs-GO-ZnMintPc nanocomposite was able to eliminate colonies of E. coli and S. aureus, while VCL/PEGDA-MNPs-MWCNTs-ZnMintPc nanocomposite was able to eliminate the three types of microorganisms; consequently, the latter is considered a broad-spectrum of antimicrobial agent in PDT and PTT.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3