Estimating Dredge-Induced Turbidity using Drone Imagery

Author:

Hayes MadelineORCID,Puckett Brandon,Deaton CharlesORCID,Ridge JustinORCID

Abstract

While maintenance dredging of port access channels is often required to maintain navigability, it can result in increased turbidity, sediment plumes, and associated reductions in water quality. Unoccupied aircraft systems (UAS, or drones) are increasingly applied to study water quality due to their high spatial and temporal resolutions. In this study, we investigated the use of drone imagery to monitor turbidity in the Morehead City Harbor, North Carolina, USA, during channel maintenance by hopper dredge. Drone flights were conducted concurrently with in-situ sampling during active dredging and post-dredging. Multispectral drone images were radiometrically calibrated, converted to reflectance and then turbidity using two separate processing methods and a single-band (red; 620nm-700nm) generic turbidity retrieval algorithm, and then compared to in-situ measurements. The method of using average reflectance to retrieve a single turbidity measurement per drone image produced agreeable results when compared to the in-situ measurements (R2 = 0.84). This method was then used to generate turbidity maps and extract surface plumes. While this could be considered a limited validation, the results indicate that realistic values can be obtained from drone imagery for low and high turbidity concentrations (1-72 FNU), making drones a viable option for monitoring surface turbidity associated with dredging.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3