Abstract
For water-stressed regions like Iran improving the effectiveness and productivity of agricultural water-use is of utmost importance due to climate change and unsustainable demands. Therefore, a hydro-economic model has been developed here for the Zarrine River Basin with the central concept of that demands are value-sensitive functions, where quantities of water-uses at different locations and times have a changeable economic benefits. To do this, the potential crop yields and the surface and groundwater resources, especially Boukan Dam inflow are simulated using the hydrologic model, SWAT, based on predicted climatic scenarios i.e. quantile mapping-downscaled projections. Then, to allocate the agricultural water based on the agro- economic crop water productivity (AEWP) of crops, a basin-wide water management tool, MODSIM, is customized. Next, a simulation- optimization model has been developed using a coupled CSPSO-MODSIM, to optimize the total AEWP, considering climatic impact and crop pattern scenarios, for 2020-2038, 2050-2068 and 2080-2098 periods. Finally, the optimum crop pattern and crop water irrigation depths are presented for different RCPs and periods. The results indicated that this approach will improve considerably the AEWPs and decrease the agricultural water-use up to 40%. Thus, this integrated model is able to support water authorities and other stakeholder in a water-scarce basin, as is the study area.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献