Abstract
Capsule endoscopy (CE) has been a widely used medical imaging tool for the diagnosis of gastrointestinal tract abnormalities like bleeding. But the CE captures a huge number of image frames that are time-consuming and tedious tasks for medical experts to diagnose manually. To address this issue, researchers focused on the computer-aided bleeding detection system to identify bleeding automatically in real-time. This paper presents a systematic review of the available state-of-the-art computer-aided bleeding detection algorithms for capsule endoscopy. The review was carried out by searching five different repositories: Scopus, PubMed, IEEE Xplore, ACM Digital Library, and ScienceDirect for all original publications on computer-aided bleeding detection published between 2001 and 2021. The PRISMA methodology was used to perform the review, and 112 full-texts of scientific papers were reviewed. The contributions of this paper are I) a taxonomy for computer-aided bleeding detection algorithms for capsule endoscopy is identified, II) the available state-of-the-art computer-aided bleeding detection algorithms including various color spaces (RGB, HSV, etc.), feature extraction techniques, and classifiers are discussed, and III) identify the most effective algorithm for practical use cases. Finally, the paper is concluded by providing future direction for computer-aided bleeding detection research.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献