Author:
Ibrahim Hajar Kh,Sabaawi Ahmed M A,Aljwari Qais Th
Abstract
This paper focuses on the impact of defects density and carrier capture cross-section area in the electron transport material (ETM), hole transport material (HTM), and absorber layers on the performance of perovskite solar cells and quantum efficiency (QE). Furthermore, the impact of defects density at the interface between ETM/absorber and absorber/HTM is also studied. SCAPS-1D software is used in the current study in determining solar cell performance. The proposed perovskite solar cell structure is a planar FTO/TiO2/ CH3NH3PbI3/ Cu2O. The results indicated that increasing the defect density in the absorber layer significantly affects cell performance, while in ETM and HTM layers, the cell parameters remain unaffected. It is also found that the defect capture cross-section has a similar behavior to the defect density in the main layers (ETM, absorber, and HTM). In addition, it is observed that by increasing the defects density in the ETM/absorber and absorber/HTM interfaces layer, the cell parameters FF, Jsc, and PCE have been slightly decreased, with no effect on Voc. Moreover, it is also noted that the quantum efficiency QE is sharply reduced. Finally, this paper introduced the correlation between the defect density and the capture cross-section, which is the first attempt to find such a relationship in perovskite solar cells to the knowledge of the authors.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. .;Tikrit Journal of Engineering Sciences;2024-05-11