Physiological and Transcriptional Analyses Provide Insight Into Maintaining Ion Homeostasis of Sweet Sorghum Under Salt Stress

Author:

Guo Huan,Nie Chun-Ya,Li Zhen,Kang Jie,Wang Xiao-Long,Cui Yan-Nong

Abstract

Sweet sorghum is an important bioenergy grass and valuable forage with a strong adaptability to saline environments. However, little is known about the mechanisms of sweet sorghum coping with ion toxicity under salt stresses. Here, we first evaluated the salt tolerance of a sweet sorghum cultivar “Lvjuren” and determined its ion accumulation traits under NaCl treatments; then explored key genes involved in Na+, Cl−, K+ and NO3− transport using transcriptome profiling and qRT-PCR method. The results showed that the growth and photosynthesis of sweet sorghum were unaffected by 50 and 100 mM NaCl treatments, indicative of a strong tolerance of this species to salt stresses. Under NaCl treatments, sweet sorghum could efficiently exclude Na+ from shoots and accumulate Cl− in leaf sheaths to avoid their overaccumulation in leaf blades; meanwhile, it possessed a prominent ability to sustain NO3− homeostasis in leaf blades. Transcriptome profiling identified several differentially expressed genes associated with Na+, Cl−, K+ and NO3− transport in roots, leaf sheaths and leaf blades of sweet sorghum after 200 mM NaCl treatment for 6 and 48 h. Moreover, transcriptome data and qRT-PCR results indicated that HKT1;5, CLCc and NPF7.3-1 should be key genes involved in Na+ retention in roots, Cl− accumulation in leaf sheaths and maintenance of NO3− homeostasis in leaf blades, respectively. Many TFs were also identified after NaCl treatment, which should play important regulatory roles in salt tolerance of sweet sorghum. This work lays a preliminary foundation for clarifying the molecular basis underlying the adaptation of sweet sorghum to adverse environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3